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Abstract

Test data generated according o two different multidimensional item
response theory models were compared at both the item response level and the
test score level to determine if measurable differences between the models could
be detected wiep the data sets were constrained to be equivalent in terms of item
p-values. Although differences could be detected at the item level, these
differences decreased as the correlation between examinee abilities increased.
Furthermore, these item differences were small in magnitude and could be
considered unimportant or insignificant from a practical standpoint. No
differences were found at the total test score level, and it was concluded that, at

least for the data used in this study, the models were indistinguishable,
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Comparison of Two Logistic Multidimensional Item
Response Theory Models

Psychomeiricians who have some interest in multidimensional item
response theory (MIRT) modeling may be familiar with the terms, compensatory
and noncompensatory as they relate to two general model classification schemes.
Ansley and Forsyth (1985) contrasted tlie two types of model classifications as
follows. "Compensatory models, unlike noncompensatory modeis, permit high
ability on one dimension to compensate for low ability on ar.other dimension in
terms of probability of correct respcnse. In the noncompensatory models, the
minimum factor (probability) in the denominator is the upper bound for the
probability of a correct response. Thus, for a two-dimensional item, a person with
a very low ability on one dimension and very high ability on the other has a very
low probability of correctly answering the item” (p. 40).

Typically, MIRT models of the compensatory type, such as the logistic
MIRT model (Doody-Bogan & Yen, 1983; Hattie, 1981; Reckase, 1985, 1986) or
the normal ogive MIRT model (Samejima, 1974) imply linear combinations of the
multidimensional abilities in the exponent of the expression for the probability of
a correct response. In this linear fashion, a low ability on one or more of the &
ability dimensions can be compensated by a higher ability on one or more of the
remaining dimensions. Because the compensation is a characteristic of this linear
combination, such models are probably more accurately labeled linear MIRT
models. A typical linear logistic MIRT model of the compensatory type can be

written as

k
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where
fijm - ajmeim
c; = the pseudo-guessing parameter of the jth item,

a;, = the discrimination parameter for the jth item on
the mth dimension,

d, = the difficulty parameter for the jth item, and

6,, = the mth element in the ith person’s ability vector,
0.

In this model the favorable response probability, P(8). is bounded from

below by ¢, However, because the upper bound of P,(8,) is not a function of any

k
one ability dimension, it increases monotonically 2s = f iNCTEAses.

me}

On the other hand, noncompersatory MIRT models (Sympson, 1978;
Embretson, 1984) describe the prctrzbility of a favorable response in terms oi a
product of k functions of ability on a single dimension and item characteristics. In
its most common form, a logistic MIRT model of this noncompensatory or

multiplicative type can be written as

k ,fi'm 2
PO - (1= [T . Y
m-1 (1+e ‘Jm)

where now we let f, . = [a,, (0, - b,,)] with b, = the difficulty parameter for the
jth item on the mth dimension. P(6) is bounded by an upper asymptote equal to
the minimum of exp{f,,}/(1+exp{f,.}), and the lower asymptote, c, for any given
examinee with ® = 0. Thus, the noncompensatory nature of the model is due to
the fact that P,(8) can never be greater than the minimum value of the terms in

the product, exp{f .} /(1+exp{f ,}), a function of the smallest value of the k
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ability dimensions for a given examinee. Because of its multiplicative form, the
model is more generally labeled as a mudtiplicaiive MIRT model.

Researchers have used the multiplicative MIRT model to examine
characteristics of un‘dimensional item response theory parameter estimates
derived from MIRT response data (Ansley & Forsyth, 1985) and to model certain
multicomponent latent traits in response processes (Embretson, 1984). Reckase
(1985) has used a linear MIRT model on real response data to estimate two-
dimensional item and person parameters on an ACT Assessment Mathematics
Usage test. However, no one has actually shown that one model is more
representative of the actual item-examinee response process than the other. It
may even be possible that one model may be appropriate under one set of
circumstances while the other type may be more appropriate in other situations.

In this paper we investigate the differences between item responses
generated by these two logistic MIRT models. We have been interested in
determining whether or not it is possible to distinguish one model or process from
the other through some evaluation of response data. More specifically, our
concern has been in establishing whether or not it is possible to detect differences
between these two MIRT models, either at the item response or test score level,
when the item parameters from each MIRT model have been matched or equated
in some sense.

The first task was to establish the item parameters from one of the logistic
MIRT models that would produce “reasonable” p-values or proportion-correct
indices for a specified examinee population. Therefore, a target distribution of p-
values for a 20-item test was conceived and item parameters for a linear or
compensatory MIRT model were chosen, basically by trial-and-error, until the
expected p-value with respect to this examinee population matched the target
distribution. Table | gives the set of item parameters for tne 20 items for the
model given by equation (1). The table also gives the expected value of each p-

value under the assumption that the ability vector, 0, for the examinee population,

H
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was distributed as bivariate normal with mean vector, 0, and variance-covariance
matrix of ones along the diagonal and with nondiagonal values equal to rho

(.00, .25, .50, or .75). All c-parameters were set to zero.

insert Table 1 Here

In order to produce a comparable or "matched” set of noncompensatory, or
multiplicative model item parameters, estimates of these item parameters were
obtained by minimizing

N 2

z{[ P8, a, d) |-[ PO, & b)) (3)

i=1

for N = 2000 randomly selected examinees with ability, 6, distributed as given
previously, where P and Py represent logistic MIRT models given by equations
(1) and (2), respectively. This process was repeated for 10 replications for each of
k =1,2, .., 20 items to insure that the estimates obtained weren’t unduly
influenced by the samples selected or the starting values used. Mean values of
the replication estimates yielded the noncompensatory item parameters listed in
Tables 2-5, for rho values of .00, .25, .50, and .75. The expected value of each
item’s p-value is given in the last column of each table. Because the least squares
minimization procedure produces urviased estimates of Py, the expected value of
each p-value under the noncompensatory model should be equal to that of the
compensatory model, within some estimation error. Equivalence of p-values was

the critical matching criterion between the two MIRT models.

B L L T P TP PP Py PP PP P P PP PP PP PP

Insert Tables 2-5
Here

...................................................................



5
Model Differences at the Total Test Level

By treating the two sets of item parameters as known for each of the two
MIRT models, we first investigated the differences between expected number-
correct score frequencies of a 20-item test when 0 was distributed as a bivariate
normal random vector with distributions given previously. These frequencies were
estimated by evaluating either the number-correct distribution under the
compensatory model, A-(y) or the noncompensatory model, hyc(y), fory
=0, 1, 2,...,20, or

h(y) = J J f(y | B) g(0) d6, db, (4)
and
hyoy) - f f fucy | 8) g(8) a6, do, . (5)

In each case, the conditional frequencies, fy16) and fu (v |0) ,were
computed using either models (1) or (2), and a recursive procedure described by
Lord and Wingersky (1984). Table 6 gives the signed differences between the
frequencies, h(y) - hyo(y), fory = 0, 1, 2, ..., 20, for rho values of .00, .25, .50,
and .75. The greatest differences, as expected, occurred for the highest number-
correct scores, but the differences in frequencies were small, never greater than
.01S5. For most number-correct score values, these differences became smaller as

rho increased.

11



6

Another way to assess the significance of these differences was to
determine how much data would need 1o be observed before the differences were
statistically detectable. This was done by calculating the minimum sample size
required to reject the homogeneity of parallel populations with given levels of test
significance and power. These calculations assumed a multivariate normal
approximation for each model’s multinomial distribution of observed-score
frequencies which in turn produced the quadratic form of the noncentrality
parameter of a noncentral chi square distribution. The minimum sample size
followed as a direct function of this parameter, the specified test significance, and
power. For example, with a significance level of .01 and power equal to .95, the
minimum sample sizes were 1678, 3242, 7466, and 15311 for correlated ability
distributions with rho equal to .00, .25, .50, and .75, respectively. These sample
sizes state that even in the unlikely event of uncorrelated ability distributions, it
would still require at least 1678 observed scores from both the compensatory and
noncompensatory MIRT models before the null hypothesis of model equivalence

could be rejected with a power of .95.

...................................................................

The first four (central) moments of each number-correct distribution are
given in Table 7 for each value of rho. Both distributions were negatively skewed
with the compensatory distribution slightly more platykurtic and both were
generally flatter than the normal distribution. The variances of the number-
correct scores increased with an increase in rho, and in general, the distributions

of number-correct scores became increasingly similar as rho increased.

...................................................................
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A contour plot of the (signed) difference between the number-correct true

scores under the two models, or

0 20

IP,0) - IF, (O

was another way to observe model differences at the total test level for various
(8,, 8,) points in the ability space. The greatest differences occurred when either
8, or 6, was low. See Figures 1-4 for rho values of .00. .25, .50, and .75,
respectively. It should be noted that, in these plots, the only influence of rho was
through the values of the noncompensatory item parameters. Recall that the
compensatory item parameters were fixed for all values of rho. Therefore, when
interpreting these contour plots, one has to mentally superimpose the appropriate
bivariate normal distribution over the contours in order to evaluate the

> ~portance of the true-score differences obsarved.

..........

Insert Figures 1-4
Here

.....................................................................

Another way to compare the two MIRT models was to observe the amount
of multidimensional information (MINF) for different points in the ability space
between the two models. MINF has been defined (Reckase, 1986) as a direct
generalization of the unidimensional IRT concept of item information (i.e, the
ratio of the square of the slope of the item characteristic curve at an ability point,
6, to the variance of the error of the item score at that level of 8). For the
definition of MINF, the slope of the item characteristic surface must be evaluated
in a particular direction, a, a vector of angles with the coordinate axes of the
ability space.

Plots of the absolute difference between the compensatory and

noncompensatory test information vectors (i.e, the sum of item information across
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the 20 items) for item parameters estimated with rho values of .00, .25, .50, and
.75 (Figures 5-8, respectively) showed that model differences might be significant
if abilities were negatively correlated. However, for all "likely” ability
distributions, there were no meaningful differences in MINF between the two

models, and these absolute differences appeared to decrease as rho increased.

............................. - o

Insert Figures 5-8 Here

Model Differences at the Item Level

It was also of interest to evaluate the differences between models at the
single item response level. There were two ways in which this was done. The
first involved the evaluation of the ideal observer index (Davey, Levine, &
Williams, 1989; Levine, Drasgow, Williams, McCusker, & Thomasson, 1990). A
more complete definition ot this index is provided in the appendix of this paper.
However, a simplifiea definition is as follows. The ideal observer index (101) is a
measure of the proportional number of times that a correct decision is made
concerning which of the two competing models produced a particular response to
an item. The decision is one that is made hypothetically by an "ideal observer," or
an individual who has access to all of the information necessary to yield the
highest possible percent of model classification (i.e., compensatory vs.
noncompensatory). As far as the ideal observer is concerned, if the item response
data fail to distinguish between the two competing models, then the value of this
index would be at or near the chance level of .5. Conversely, readily
distinguishable models should yield an index near 1.0.

Table 8 shows that the IOl was greater than chance, implying that there
was a difference between the models for all 20 items. However, the 101 was

never greater than .60 and was greater than .55 for only three items, numbers 3, 6,
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and 7, when rho was .00. The value of the 10I] decreased for each item as rho
increased, implying that it hecame more difficult to distinguish between the
models as the correlation coefficient increased.

One way to think of the magnitude of the IOI was to imagine how many
trials of the 10 experiment would be necessary before the ideal observer could
ascertain, with some given level of certainty, that the models weie actually
distinguishable. This would be comparable to a test of the difference between any
obtained IOl from Table 8 and the null proportion of correct model classifications
due to chance. For example, to be able to detect a true difference between the
models for item number 6 with a zero value of rho would require at least 40 trials
of the 10 experiment. This would be comparable to a test of the null proportion
of correct classifications due to chance or .50 versus the (true) alternative
proportion (.555) with a significance of .01 and power of .95. Conversely, a true
101 of .52 would require more than 290 trials at similar levels of test significance

and power.

...................................................................

................................................................

Another way to evaluate model differences at the item level was to use a
generalized MIRT model, or a reparameterization of both the compensatory and
noncompensatory models into a single MIRT model, or

ef.jx'ff,'z

P(8) - ¢ + (1-¢) : (6)

i1+ £ fi
1 + eul'qz + “(’f’ gl e;)Z)

where u represented an indicator variable such that

0, for the linear or compensatory MIRT model,

*®
Il

1, for the multiplicative or noncompensatory MIRT model.
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Item response data, x;, were generated from samples of size N = 2000 of
0, drawn from the bivariate normal distributions mentioned previously. The
response data were known to have been produced by either the compensatory or
noncompensatory MIRT model and were simulated by comparing the known

values of P/(6) to a pseudorandomly drawn uniform deviate, , such that

lv 0 € w < PJ(B|)

xij =

0, P(8) <o < 1.

The least squares estimation procedure was used to est.mate the
generalized MIRT model parameters. Each estimation was replicated 10 times
with randomly selected starting values. Either four or five unique item
parameters were estimated from the generalized MIRT model, as given by
equation (6). The same item parameters that were given in tables 1-S were used
to generate the response data for the estimation procedure. When the response
data were generated by the compensatory model, a,, a,, and d (i.e.,d = - ab, -
ah,) as well as u, were estimated. When the response data were generated by
the noncompensatory model, a,, a,, b,, b,, and u were estimated.

Table 9 shows the average bias in the item parameter estimates and the
standard deviations of the estimates (in parentheses). For compensatory data, the
model parameter, 4 was estimated fairly accurately for the uncorrelated situation,
but the amount of bias and the standard deviation of the estimates increased as
rho increased. A similar situation occurred with noncompensatory data.
However, although the amount of estimation error increased as the correlation
between the abilities increased, the model still remained identifiable, in the sense

that for compensatory data, the y estimates were statistically "close” to zero.

16
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Likewise, for noncompensatory data, the u estimates were satistically "close” to

one.

Insert Table 9 Here

The IOl analysis and the generalized MIRT model estimation gave similar
results. That is, there were model differences at the item level, but these
differences tended to decrease as the correlation in abilities increased. The
generalized MIRT analysis also suggested that these differences might still be

estimable, however, even when abilities are strongly correlated.

Summary and Conclusions

These analyses and results seem to indicate that even though it is difficult
to observe model differences at the overall test score level, there still may be
measurable differences between the responses at the item level. Because the
matching criterion between the two models resulted in similar expected p-values,
we anticipated small differences at the total test score response level, or at the
true scor¢ level. The differences that were detected at this level were consistent
with the differences implied in the two models. Fewer high, number-correct
scores or estimated true scores were observed from the noncompensatory model,
but these and other total test differences decreased as rho increased. As for the
item response level analysis, both the 101 and the generalized MIRT model
estimation showed that it is possible to quantify these differences and to
distinguish between the data gencrated by carefully matched item response
models of these two types. However, these differences, although real, are very

small and probably not significant from any practical standpoint.
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Although it is difficult to generalize beyond the two-dimensional situation
used in the present study, it would appear to be difficult to distinguish between
the two models without the benefit of any prior knowledge of item parameters or
abilities. Even with such prior knowledge, response data generated by the models

are nearly indistinguishable, especially with correlated abilities, which is likely the

case in many real testing situations.

18
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Appendix

Analytical Definition of the Ideal Observer Index

A hypothetical observer is presented with two abilities, t; and t,, each with
their associated item responses, u, and u,. The observer is informed that one
ability-response pair was generated by one of two competing item response
models, while the other pair was generated under the second model. The task is
to correctly match each ability-response pair with the proper generating model.
To make this decision, the observer is given access to both competing item
response functions, P, and P, , and the common ability distribution, f(t).

An ideal observer bases this decision on an optimal rule, §, which is
determined by the ratio of likelihood functions, Li(t,u) = P(t)" Qt)"™ , where
Qi(tj) =1- P,.(tj), i =1,2; j =1, 2. The decision rule, §, is then defined as

if Ly(t,u,)1y(tu) > Li(ty,u) Ly(ti,u,), then decide model {Py:f)
produced sample {t,u,} while model {P,;f} produced {t,u,}.

if Ly(tpu) Lot,u) > Ly(tyu,)Ly(t,0,), then decide model {Py;f}
produced sample {t,u,} while model {P,;f} produced {:,u,}.

The probability of this decision rule being correct, given the model, is

Prob[é correct|model] = Prob[L,(t,,u,) - Ly(t,u;) > Ly(t,uy) - Ly(t u) [ {P;f}&{Pyf}] +

Prob[L(1,,u;) - Ly(t,uy) > Ly(ty,u;) - Ly(ty,u) | {Pyf}&(P;f}].
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The response pair, u, where u = (u,,u,), can be defined in four possible
patterns: (1,1), (1,0), (0,1), and (0,0). Therefore,

Prob[L,(t,,u;) - L,(t,u;) > Li(tpu;) - Li(t,u) | {P:f}&{Pyf}] =

Prob[P,(t,) - P,(t;) > Py(t)) - Py(t))|u=(1,1)] - Problu=(1,1) | {P;{} & {P,;f}]
+ Prob[P,(t,) - Qx(t) > Q(ty) - Py(t,)|u=(1,0)] - Problu=(1,0)| {P;f}&{P};f}]
+ Prob[Q,(t;) - Py(ty) > Py(t;) - Quty) [u=(0,1)] - Problu=(0,1)| {P;f}&{P,;f}]

+ Prob[Qy(t;) - Qu(ty) > Qu(ty) - Qyt)|u=(0,0)] - Problt:=(0,0) {P;f}&{P5f}].

Define =, = [[P,(0"Q,0)' " P,(2)Q,(8)' ™ 1) 1(@) ot dg.
Then, Prob[L,(t,,u;) - Ly(t;u;) > Ly(t,u,) - Ly(t,u) [{P;f}&{Pyf}] =

711 Prob[P (1)) - Py(t)) > Py(1y) - Py(t) Ju=(1,1)] +
70 Prob[P (t;) - Qu(t)) > Qi(ty) - P(t)|u=(1,0)] +
To1 Prob[Q,(t)) - Pa(ty) > Py(ty) - Qu(t)u=(0,1)] +

o Prob[Qy(t,) - Qy(ty) > Qy(t,) - Qu(ty) [ =(0,0)].

Similarly, Prob[Ly(tyu;) - Ly(tyt;) > Ly(tyuy) - Lyftyu,) [ {P0&{Pyf}] =
Prob[P,(1,) - Py(t;) > Py(t,) - Py(ty)|u=(L1)] - Probfu=(11) | {Pf} &{Py:f}]
+ Prob[Py(t,) - Qu(t,) > Qy(t,) - Py(ty) |u=(10)] - Problu=(1,0)| {Pf}&{P,:f}]
+ Prob{Qy(ty) - Py(ty) > Py(ty) - Qu(t) lu=(0,1)] - Probfu=(0,1)] {P;f}&{P;;f}]

+ Prob[Q,(t;) - Qu(t;) > Q(t,) - Qy(t,)|u=(0,0)] - Problu=(0,0)|{P,;f} & {P,;f}].



17
Ther, Prob[L;(tu;) - Ly(t,u) > Ly(tuy) < Ly(tu) | {Pif}&{P;f}] =

71 Prob[Py(t,) - Py(t)) > Py(t)) - Py(t) |u=(L,1)] +
710 Prob[Py(t)) - Qy(t) > Q,(ty) - Py(ty) |u=(1,0)] +
For Prob[Q,(t;) - Py(t) > Py(t;) - Q,(t,)lu=(0,1)] +

¥oo ProbQy(ty) - Qu(ty) > Qu(ty) - Qu(t;) [u=(0,0)).
Let 2, . be defined as that region of the ability space where
P‘(t‘)ui . Ql(tl)ul"l . Pz(lz)uz . Qz(tz)uz_‘ > Pl(tz)uz - Q‘(tz)uz" . Pz(tl)u{ . Oz(t‘)ul"‘
holds, and likewise let ﬁum be defined as that region of the ability space where

Pyt - Q1) - Py(ty)" - Q1) > Py(t)™ - Qu1)" " - Py(1)*? - Qy(1y)?

is true. Then

Prob[P,(t,) - Py(t,) > P(t,) - P(t)lu = (1,1)] - U f(t) f(g) dt dg,
11

Prob[P,(1,) - Q,(t,) > Q,(t,) - P,(t)lu - (1,0)] - U f(t) f(g) dt dg,
10

Prob[Q,(t,) - Py(t,) > P(t,) - Q,(t,)lu = (0,1)] - J q[ f(t) f(g) dt dg,
1
and

Prob[Q,(1;) - Qy(1,) > Q,(1,) - Q) lu = (0,0)] = J i} f(t) f(g) dt dg.
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Then

Prob[P,(t,) - Py(t,) > P,(t,) - Py(t)lu = (1,1)] = J‘J f(t) f(g) dt dg,

01

Prob[Py(t;) - Qu(t) > Qut,) - Py(t) 1w - (O1)] = [ [£(1) f(g) dt d,
%01

Prob[Q,(ty) - Py(t,) > Qy(t) - Py(t)lu - (1,0)] - _U f(r) f(g) dt dg,

810

and

Prob[Qy(t;) - Qx(t) > Qu(t,) - Qu(t)lu = O] = [ [f(1) f(g) t dg.
Q00

Thus, Prob[é§ correct|model] =

7, | [ () f(g)dtdg + = [ [ f(t)f(g)dtdg +
“dy “dyp
7, [ [ () f(g)dtdg + w [ [ £(t)f(g)dtdg +

“dony " doo
7., | | f(Hf(g)dtdg + m, f(t)f(g)dtdg +
"8y " oy |
7o, | f(t)f(g)dtdg + 7| | f(t)f(g)dtdg

~ -
0] Q00

or

+

Ty * xm{J J f(1)f(g)drdg + J J‘ f(t)f(g) dtdg
10 991

7ol J ,([ f(t)f(g) dtdg + J J f(1)f(g) dtdg) + 7,
1

810

N
Q it
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Finally, Prob[é correct] = Prob[é correct| model] - Prob[selecting a
model]. Because each model is cqually likely, the probability of selecting a model
is equal to .S. Thus, Prob[é correct] = .S(Prob[é correct|model]).

20
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Original Item Parameters for the Compensatory Model

E(p-value)
rho
Item # a, a, d .00 25 S0 75
01 0.90 131 -0.67 39 39 40 40
02 2.10 0.50 -1.13 34 35 36 36
03 0.89 1.10 052 59 59 S8 58
04 0.99 1.00 -0.44 42 42 43 43
0s 0.58 1.65 0.78 63 62 62 .01
06 091 1.27 042 57 57 .57 .56
07 103 0.95 1.08 .09 .68 67 .67
08 032 227 038 55 S5 55 S5
09 0.61 0.72 1.63 80 9 .19 .78
10 0.67 1.12 0.60 61 .61 .60 60
1 091 0.91 -0.21 46 46 46 47
12 0.64 1.72 -0.05 49 49 49 49
13 1.65 0.38 040 .57 56 .56 .56
14 0.18 1.61 1.84 .78 78 78 g7
15 0.82 1.02 0.09 52 52 52 .51
16 145 0.81 -0.24 46 46 46 A6
17 1.64 0.62 0.85 .64 .63 63 .62
18 0.77 0.76 -0.91 32 33 34 34
19 146 0.62 0.10 52 52 52 .52
20 0.39 137 032 56 56 .55 55




Table 2

2

Item Parumeters for the Noncompensatory Model with Rho = .00

Item # a, 3, b, b, E(p-value)
01 1.26 1.60 0.92 0.15 38
@ 230 1.04 038 -2.28 34
03 1.22 1.39 -1.42 -0.99 59
04 1.32 135 0.62 -0.58 42
05 1.02 1.82 2.1 0.62 62
06 1.25 1.53 -1.45 0.9 S6
07 1.30 1.26 -1.48 -1.63 68
08 0.92 238 -3.95 -0.22 35
09 0.93 1.00 -2.75 -2.35 30
10 1.05 1.37 -1.96 -0.90 61
11 1.24 1.25 -0.78 -0.75 46
12 1.07 1.92 -2.17 0.19 49
13 1.81 0.88 036 -3.25 56
14 0.85 1.67 -5.26 -1.17 718
15 1.17 132 -1.21 0.75 51
16 ) I 1.23 -0.27 -135 45
17 1.83 1.06 0.6 -2.55 63
18 1.09 1.09 -031 032 32
19 1.69 1.07 0.35 -1.98 51
20 0.88 1.54 -2.98 -0.41 55

27



Table 3

Item Parameters for the Noncompensatory Model with Rho = .25

|

Item # a, a, b, b, E(p-value)

01 1.38 1.74 079 .14 39
02 240 1.14 0.35 -1.88 4
03 1.36 1.50 -1.27 -0.91 8
04 1.44 145 -0.56 -0.51 42
05 1.17 194 -2.30 -0.60 61
06 1.40 1.66 -128 -0.73 .56
07 1.45 1.40 -1.34 -1.47 72
08 1.05 247 -330 -0.22 S5
09 1.02 1.09 -2.49 -217 79
10 1.17 1.47 -1.72 -0.85 60
11 1.34 1.34 -0.71 -0.68 .46
12 1.21 2.06 -1.82 -0.20 49
13 1.90 0.98 -0.36 -2.80 .56
14 0.93 1.72 -4.658 -1.15 8
15 1.29 142 -1.08 -0.69 51
16 1.84 133 -0.27 -1.16 A5
17 1.97 1.20 -0.66 -2.19 62
18 1.15 1.16 -0.28 -0.27 33
19 1.80 118 -0.35 -1.71 S1
20 0.98 161 -2.57 -0.40 55

(ARG

£




'9“ *

Table 4

Item Parameters for the Noncompensator, Model with Rho = .50

Item # a, a, b, b, E(p-value)
01 1.52 1.82 -0.66 .12 39
02 248 1.27 0.32 -151 35
03 1.49 1.63 -1.14 -0.85 8
04 1.54 1.54 0.50 0.4, A2
05 1.32 2.04 -1.97 0.59 61
06 1.55 L.79 -1.13 .68 56
07 1.58 1.55 -1.23 -1.33 67
08 1.20 2.51 -2.78 -0.22 5
05 1.10 1.17 -2.30 -203 18
10 1.28 1.56 -1.53 -0.80 .60
11 1.44 1.43 0.64 .61 46
12 1.36 213 -1.54 0.19 49
13 1.96 1.09 -0.36 -2.39 36
14 1.03 L7 4.07 -1.13 T
15 1.39 1.51 -0.97 -0.64 A1
16 1.95 1.47 -0.26 .99 46
17 2.08 1.35 0.63 -1.89 02
18 1.21 1.20 0.23 0.23 33
19 1.89 1.30 -0.34 -1.46 )
20 1.08 1.60 -2.23 .40 S5
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Table 5

Item Parameters for the Noncompensatory Model with Rho = .75

Item # a, a, b, b, E(p-value)
01 1.65 1.92 0.51 -0.10 40
02 253 1.43 031 -1.14 35
g3 1.60 L.73 -1.01 077 58
04 1.63 1.64 -0.42 -0.39 43
05 1.48 214 -1.67 -0.57 61
0 1.69 1.92 .98 .62 Se
07 1.69 1.66 -1.13 -121 66
08 1.36 257 -2.25 0.2 .55
09 1.15 121 -2.17 -1.93 18
10 138 1.63 -136 -0.76 60
11 1.50 1.51 .56 -0.54 46
12 1.53 2.23 -1.22 0.19 49
13 1.98 1.26 -0.36 -1.99 5o
14 1.15 1.78 -3.60 -L11 T7
15 1.47 1.59 -0.85 -0.59 S1
16 2.03 1.63 0.3 -0.81 40
17 2.15 1.53 -0.61 -1.60 .62
18 1.24 1.24 .18 0.18 34
19 1.94 1.44 033 -1.23 S
20 1.17 1.70 -1.92 -0.40 .55

30



Table 6

Compensatory Minus Noncompensatory Density Differences in Number-correct Score

rho
Number-correct
score (y) .00 25 .50 15
20 013 014 014 011
19 015 012 .009 004
18 012 007 003 000
17 007 003 000 -002
16 002 -.001 -.002 -003
15 -.003 -003 -.004 -.003
14 -006 -.005 -.004 -.003
13 -.009 -.007 -.005 -003
12 -011 -.007 -.005 -002
11 -012 -.008 -.005 -002
10 -012 -.008 -.004 -.001
9 -011 -.007 -.004 -n01
8 -.009 - 006 -003 000
7 -.006 -.004 -.002 001
6 -.003 -002 -001 001
5 001 000 001 002
4 005 002 002 002
3 .008 005 003 002
2 009 006 004 001
1 008 006 003 -001
0 -005 003 001 -.004
31
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Table 7

Central Moments of Number-correct Scores

Second Third Fourth

MIRT Models rho Mean Central Central Central
Moment Moment Moment

.00 10.90 25.79 -16.56 1362.83

Compensatory 25 10.88 29.40 -20.44 1680.36

50 10.86 32.64 -24.01 1980.03

.75 10.84 35.57 -27.27 2262.98

00 10.79 20.67 -9.42 946.49

Noncompe nsatory 25 10.78 2543 -15.86 1336.75

.50 10.78 30.12 -24.30 1760.04

.75 10.78 34.70 -32.74 22(0.57

=)
(oW
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Table 8
Ideal Observer Index
rho

Item # .00 25 S0 75
01 5479 3397 5295 51719
02 5311 5265 5205 5128
03 5513 S418 5307 5183
04 5461 5377 5279 5171
05 5421 5353 5265 5157
06 5550 5451 5332 5194
07 S511 5419 5304 5175
08 5243 5212 5165 5102
09 5276 5227 S162 5092
10 5430 5351 5254 5149
11 5435 5355 5260 5156
12 5448 5375 5281 5166
13 5291 5246 5188 S112
14 5124 S109 5082 5048
15 5456 5370 SN 5161
16 5497 5411 5307 S182
17 5442 537 5276 5162
18 5281 5232 5175 5114
19 5425 5352 5260 S156
20 5292 5241 5179 5108
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Table 9

Average Bias (parameter estimate - true parameter) and Standard Deviation

of Bias in Estimates of the Generalized MIRT Model Parameters

Response
Data Model rho a, a, d b, b, m
.00 044 024 069 013
(.042)  (.073) (-158) (009)
25 044 040 125 026
Compensatory (047)  (042) (275) (052)
50 078 069 255 064
(055)  (.081) (-238) (.060)
75 098 113 787 107
(128)  (080)  (1.930) (094)
.00 -.008 009 130 230 -199
(099)  (.115) (448)  (354) (-163
25 -.006 -.004 250 254 -.197
Noncompensatory (.090)  (.083) (622)  (469) (.144)
50 039 -076 191 183 -200
(.145)  (.104) (.888)  (.265) (-125)
75 -155 -.059 071 250 -288
(220)  (.109) (439)  (421) (-175)

Note: standard deviations are in parcntheses
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Figure Captions

Figure 1, Difference Between Compensatory and Noncompensatory True Scores:
Rho = .00

Figure 2. Difference Between Compensatory and Noncompensatory True Scores:
Rho = .25

Figure 3. Difference Between Compensatory and Noncompensatory True Scores:
Rho = .50

Figure 4. Difference Between Compensatory and Noncompensatory True Scores:
Rho = .75

Figure 5. Absolute Difference Between Compensatory and Noncompensatory Test
Information Vectors: Rho = .00

Figure 6. Ahsolute Difference Between Compensatory and Noncompensatory Test
Information Vectors: Rho = .25

Figure 7. Absolute Difference Between Compensatory and Noncompensatory Test
Information Vectors: Rho = . 50

Figure 8. Absolute Difference Between Compensatory and Noncompensatory Test
Information Vectors: Rho = .75
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